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Abstract: Malaria is occurred by biting of infected Anopheles mosquitoes. Four species of Plasmodium are 

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae .This disease is found 

in tropical countries, especially Thailand. We consider the effect of flooding in Thailand with the transmission of 

Malaria disease. Mathematical model is formulated by using theory of modeling. The variables and parameters 

are defined corresponding to the characteristic of this disease. Our model is analyzed by using dynamical 

modeling method. Numerical simulations are shown comparing with the analytical solutions. 
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1. Introduction  

Anopheles mosquitoes is the epidemic vector of this disease. This disease is caused by the multiplication of 

protozoa parasite of the genus Plasmodium. P.falciparum, P.vivax, P.malariae and P.ovale are four species of 

Plasmodiums. Greater than three hundred million Malaria cases are reported per year [1]. Each species are 
discovered in the different areas. Plasmodium falciparum is found on the tropic and subtropics such as Africa, 

South America and Asia. Plasmodium vivax is found in the widest area. It can be found in many temperate 

zones, subtropics and tropic such as China, Turkey, Latin America and Asia. Plasmodium malariae is found in 

the same area as Plasmodium falciparum but is much less common in areas such as Central America. 
Plasmodium ovale is found predominantly in tropic Africa, but many occur in the West Pacific. Blood 

transfusion can receive this disease accidentally. This is one of the reasons why people who have been infected 

with disease can never donate blood.  Infection of a newborn from an infected mother also happens, but it is 
comparatively rare [2]. In the first two months of life, children may not contact malaria or their manifestations 

may be mild with low-grade parasitemia[2],  Host, agent and environment are three factors which influence to 

the transmission of Malaria. The most important environmental factors are temperature and humidity. When the 
temperature is under 16, Malaria parasites stop developing in the mosquitoes. The best temperature for the 

development of this disease is between  20 – 30 C. The average relative humidity is at least 60% [3]. There are 4 

cycles of this mosquito: egg, larva, pupa and adult. The male Anopheles feeds on nectar and fruit juices while 

the female takes both these plant products and blood [4]. The female may lay several batches of eggs during her 
lifetime. The eggs hatch within 2 – 3 days, releasing the larvae into water, the larvae transform into the non-

feeding pupae. Within the pupae, over a period of 2 – 4 days, metamorphosis takes place, terminating in the 

materialization of the adults [5]. Sick due to this disease causes significant economic loss. Situations of global 
temperatures increase the life cycle of a mosquito vector[3]-[5]. The period of mosquito eggs and larvae molt 

growth as a mosquito can take 7-10 days. The average life expectancy of the mosquito is 45 days. In Thailand, 

Malaria is found along the border with Burma, Cambodia, and Malaysia. The original Malaria model is usually 

described by the RossMacDonald (RM) model [6].In 2001, Kammanee A et al.[7] formulated the mathematical 
model for Malaria transmission and basic reproductive number is found to reduce the outbreak of the disease. To 

describe the flooding in Thailand with the transmission of Malaria, we incorporate the flooding parameters to 

our model. Analytical result and numerical simulations are used in our study to suggest the way for reducing the 
disease outbreak. 

2. Mathematical Model 

We study the transmission of Malaria with flooding in Thailand by formulating the differential equations. 
We use the knowledge of mathematical model to describe the transmission of this disease. We consider the 
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dynamical equations of human and mosquitoes. The differential equations for describing the transmission of this 
disease is  
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The variables and parameters in our equations are described as follows: 

)(tnS is the size of susceptible human population at time t, 

)(tnE is the size of exposed human population at time t, 

)(tnI is the size of infectious human population at time t, 

)(tnR is the size of recovered human population at time t, 

)(tS
fv is the size of susceptible mosquito during the flood at time t, 

)(tI
fv  is the size of infectious mosquito during the flood at time t, 

)(tS
fnv is the size of susceptible mosquito during the non-flood at time t, 

)(tI
fv  is the size of infectious mosquito during the non-flood at time t, 

h  is the birth rate of human population, 

d  is the death rate of human population, 

n  is the transmission rate of Plasmodium malaria from mosquito to human, 

nII is the incubation period of Plasmodium malaria in human, 

nN is the size of human population, 

fvN is the size of mosquitoes during flooding time, 

fnvN is the size of mosquitoes during non-flooding time, 

      is the recovery rate of human population, 
   fA is the constant recruitment rate of mosquitoes during flooding time, 

  fnA is the constant recruitment rate of mosquitoes during non-flooding time, 

   
fv  is the transmission rate of Plasmodium malaria from human to mosquitoes during flooding time, 

   
fnv  is the transmission rate of Plasmodium malaria from human to mosquitoes during non-flooding time, 

   vd   is the death rate of mosquitoes,  

Suppose that the size of human and mosquitoes are constant, then  
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fvI
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fn
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Normalizing the above equations by letting nNnSns / , nNnEne / , nNnIni / , nNnRnr / , 
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Thus, the reduced equations become: 
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3. Analysis of  Mathematical Model 

3.1 Analytical Solutions 

The standard dynamical method is used for analysis our model. Steady states of our equations are found by 

setting (9)-(13) to zero, then we obtain the steady states: 
 

i) Disease free steady state: (1,0,0,0,0) and 

ii) Endemic steady state: ),,,,(
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(14) 
    By using Standard dynamical modeling method, the local stability of each steady state is determined by 

considering the signs of eigenvalues. If the signs of all eigenvalues give negative, then we can conclude that that 

steady state is local stability [8-10]. The characteristic equation is defined by following equation:  

0  I J   

where A  means determinant of A, J is the Jacobian matrix,  is the eigenvalues and I is the identity matrix .                                                

After evaluating our model, the condition for negative real parts of eigenvalues is 10 R , where 
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Therefore, we can conclude that the disease free steady state is local stability for  

0R  < 1 and the endemic steady state is local stability for 0R  > 1. 

  3.2 Numerical Solutions: 
Numerical method is used for solving numerical solutions of (9)-(13). We simulate our equations for disease free 

and endemic regions.  
For disease free region: 

 

     

     
Fig. 1: Time series solutions of susceptible human, exposed human, infectious human, infectious mosquito during flooding 

time and infectious mosquito during non-flooding time on disease free region. The solutions converge to (1,0,0,0,0) 

 

For endemic region:  
The parameters are follows:  

)65365/(1h   corresponds to the life cycle 65 years of human. ,006.0n  008.0v  f , 002.0
nv 

f
 

and 000,10h N are arbitrary chosen parameters. 45/1vd corresponds to 45 days life time of Anopheles 

mosquitoes. nII = 14 corresponds to 14 days of incubation period of Plasmodium malaria in human. 

14/1 corresponds to the 14 days of recovering of human and 4930 R . 
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Fig. 2: Time series solutions of susceptible human, exposed human, infectious human, infectious mosquito during flooding 

time and infectious mosquito during non-flooding time on endemic region. The solutions converge to 

(0.01,0.0006,0.0006,0.5,0.2) 

From the above figures, we can see that the solutions converge to the disease free steady state for 0R  <  1. For 

0R  > 1, the solutions converge to the endemic steady state.  

4. Conclusions 

In this study, we formulate the model of Malaria transmission with the influence of flooding in Thailand. 

Condition for local stabilities of disease free steady state and endemic steady state is defined by 0R , where 
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The basic reproductive number is given as 0
'
0 RR  , defined as the average number of secondary cases 

produced from primary cases [8]. From (15), we can see that the transmission rates of Plasmodium Malaria  

( n ,
fv and 

fnv ) effect to the basic reproductive number. If we can reduce the transmission rate of this 

disease, then we can reduce the outbreak of the disease. Next, we simulate our solutions for different values of 

transmission rates. 
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Fig.3: Time series solutions of susceptible human, exposed human, infectious human, infectious mosquito during flooding 

time and infectious mosquito during non-flooding time for the different sets of transmission rates. 

We can see that when the transmission rates are higher, the steady state solutions of exposed and infectious 

groups are increasing but the steady state solutions of susceptible group is decreasing. From our simulations, we  

can see that the infectious proportion during flooding time is higher than the infectious proportion during non-
flooding time. This is true because mosquitoes in the flooding time can grow faster than mosquitoes in the non-

flooding time.   
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