
Constraint Word Clustering Algorithm for Asymmetric

Relationship

Rajkumar Jain
1
, Narendra S. Chaudhari

2

1, 2
Indian Institute of Technology, Indore, 453441, India

2
Visvesvaraya National Institute of Technology, Nagpur, 440001, India

Abstract: A new constraint word clustering algorithm is proposed for the given corpus. The proposed method

is based on the constraint clustering of words. In this paradigm words are considered similar if they appear in

similar contexts and contexts are similar if there word affinity clouds are equivalent. Different types of

association between words are identified and based on this association constraints are identified and generated.

Proposed constraint algorithm is applicable for words having asymmetric relationship between them; therefore

this approach may prove useful as a complement to conventional class-based statistical language modeling

techniques.

Keywords: Word Clustering, Constraint Clustering, Natural Language Processing, Must-link Constraint.

1. Introduction

Word Clustering is an important problem in web mining, natural language processing, automatic word
classification, word sense, web analytics, computational linguists, and in parsing highly ambiguous syntactic

structures [1, 2]. Word clustering [3] is a technique for partitioning sets of words into subsets of similar words.

Cluster of words can be identified on the basis of similarity between words or according to the affinities between

words. A cluster comprises words that are sufficiently affine with each other. Words in the same cluster are
highly affine and words in different cluster are less affine. Word clustering, is a useful approach for improving

the performance of sentence retrieval, the more similar the words in each cluster, the better the performance of

the retrieval system. Despite the usefulness of word clustering, accurately clustering the words remains a
challenging task.

In the context of information retrieval, a new constraint word clustering is projected based on the paradigm

of constraints for asymmetric relationship between words. Constraint word clustering approach is appropriate at

discovering semantic relationship between words rather than discovering syntactic relationship between words.
Affinity [3, 4, 5] describes the quantitative relationship between words. An affinity describes a quantitative

relationship between the two words and this in turn helps to identify the clusters of words. A cluster comprises

words that are sufficiently affine with each other. A first word is sufficiently affine with a second word if the
affinity between the first word and second word satisfies one or more affinity criteria. Present research focuses

on the clustering of words based on the finding of semantic relationship between words. Semantic relationships

between words are modelled by identifying the constraints. Present research proposes a constraint clustering
architecture and algorithm based on the different types of constraint associated between words. Our contribution

is summarized as follows: we investigated the constraints based on properties word cloud, we investigated the

constraints based on association between words and we presented a constraint word clustering algorithm for

asymmetric relationship between words.

2. Related Work

There have been a number of methods proposed in the literature that consider word clustering problem.
Words with similar co-occurrence distributions is explored by Brown et al.[6], it is based on class-based n-gram

model in which words are clustered into word classes. Pereira et al.[7] present probabilistic membership of

words and estimated a soft distributional clustering scheme for certain grammatical co-occurrences. In this
strategy the conditional probability of a word is computed by taking advantage of observations of other words

that act like this word in this context. A number of variant have been developed on this theme, using

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 106

grammatical constraints such as part-of-speech, or morphological units such as lemma, or both [8]. Similarity

based model are explored in [9-10] which avoids building clusters. There are algorithms that automatically
determine word classes without explicit syntactic or semantic knowledge. In [11] all words are gathered into a

single class at the beginning of the procedure, and are successively split to maximize the average mutual

information of adjacent classes. In [12], a similar divisive clustering is proposed, based on binomial posteriori

distributions on word co-occurrences. Text categorization can be achieved in various ways, in [13] Bag-of-
Concepts is used to Improve the Performance of support vector machines. The impact of feature selection on

document clustering is discussed in [14]. Hierarchical relationship and associative relationship, is a important in

automatically building a thesauri or in finding associative relationship between words. Identification method
[15] based on co-occurrence analysis computer the hierarchical relationships between words. Our constraint

word clustering method has an advantage over non-constraint clustering algorithm that it extracts background

knowledge and guides the algorithm clustering and makes it more suitable for practical use.

3. Affinity Computation and Modelling Based on Co-occurrence

Co-occurrence means coincidence or, frequent occurrence of two terms from a text corpus alongside each

other in a certain order. Word co-occurrence in this linguistic sense can be interpreted as an indicator of semantic
proximity. The global co-occurrence is an absolute or un-normalized metric. For the purpose of comparing term

co-occurrences between different queries and sets of retrieved documents, co-occurrence is normalizing within a

practical scale. So, co-occurrence values are normalized in the range of practical scale from 0 to 1.

Definition 1: The affinity [16] between any two words wa & wb is defined as the ratio of the number of co-
occurrence that include both terms wa and wb over the maximum of either the number of co-occurrence contexts

that include wa or the number of co-occurrence contexts that include wb . The Affinity is given by the following

formula:

 Affinity(𝑤𝑎 ∩ 𝑤𝑏) =
𝑃(𝑤𝑎 ∩ 𝑤𝑏)

max (𝑃(𝑤𝑎), 𝑃(𝑤𝑏))
 (1)

Definition 2: The directional affinity [16] between word wa & wb is defined as the conditional probability of

observing word wb, given that word wa was observed in a co-occurrence context. Directional affinity is used to

describe the importance of word of word wa with respect to word wb. The directional Affinity (DAffinity) is
given by the following formula:

 DAffinity(𝑤𝑎 ∩ 𝑤𝑏) =
𝑃(𝑤𝑎 ∩ 𝑤𝑏)

𝑃(𝑤𝑏)
 (2)

Definition 3: Average directional affinity [16] of a term wa is the average of the directional affinity of a word

with all other words in the co-occurrence contexts. The average directional Affinity (ADAffinity) is given by the

following formula:

ADAffinity(𝑤𝑎) =

∑ 𝑃(𝑤𝑎 ∩ 𝑤𝑗)
𝑁

𝑗=1

𝑁

(3)

Definition 4: Differential directional affinity [16] of a term wa is the difference of directional affinity wa and

average of the directional affinity of word wa. Differential directional affinity (DiffDaff) is used to normalize the

affinity of word with respect to other words.

 DiffDAff(𝑤𝑎) = Affinity(𝑤𝑎 ∩ 𝑤𝑏) − ADAffinity(𝑤𝑎) (4)

4. Constraint Word Clustering

Definition 5: A word cloud for a word wa is cloud of words or group of words that are highly with affine with

word wa or all words whose affinity is less than given threshold value δ. A word cloud represents a similarity

feature. If clouds of two words are same then they are semantically related. A word cloud for wa is represented
as: wcloud(wa) = {w1, w2,…,wq}, where DAffinity(wa, wi) ≥ δ, 1 ≤ i ≤ q

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 107

4.1 Constraint Modeling
Wagstaff and Cardie [17] introduced constraints in the area of data mining research. Constraints provide

guidance about the desired partition and make it possible for clustering algorithms to increase their performance.

There are two types of constraints that were termed as must-link constraint and can-not link constraint. In must-

link (ML) constraint two instances have to be in the same group, ML(a, b) symbolize instance a and b to have be
in the same group. In cannot-link (CL) constraints two instances must not be placed in the same group, CL(a, b)

symbolize instance a and b to have be in the different group. Let us consider words wa and wb, wcloud(wa) and

wcloud (wb) are their respective word cloud.

4.1.1 Must Link Constraint

If wcloud(wa) and wcloud(wb) are similar then there exist a ML(wa, wb) constraint. It is represented in

boolean formulation as: ML(𝑤𝑎, 𝑤𝑏) ⇒ 𝑤𝑎𝑘 ∧ 𝑤𝑏𝑘 = 1, where, wak means word wa belong to k
th
 cluster.

4.1.2 Can-not Link Constraint

 If wcloud(wa) and wcloud (wb) are not similar then there exist a CL(wa, wb) constraint. It can be represented

as a boolean formulation as: CL(𝑤𝑎 , 𝑤𝑏) ⇒ 𝑤𝑎𝑖 ∧ 𝑤𝑏𝑖 = 0 where, wai means word wa belong to i
th

cluster and i ≠

j.

4.2 Word Clustering Architecture
Constraint word clustering architecture contains two main components: knowledge matrix component and

clustering component (See Figure 1). In this architecture, knowledge matrix component facilitates the building
of affinity knowledge matrix based on the characteristics of source corpus. By varying the similarity

criteria/measure different affinity knowledge matrix can be generated according to the need. Clustering

component identify and generate the constraints and produces word cluster. Description of word clustering
architecture is as follows:

4.2.1 Indexer

To search large amounts of text quickly it is required to convert the text into a suitable format that allows

searching text rapidly. For this purpose a suitable data structure inverted index table is used. Indexer is the

component that builds the inverted index table from the source corpus. It eliminates the slow sequential scanning

process of the text. Given a corpus 𝐶 = {𝐷1, 𝐷2, … , 𝐷𝑝} containing p text documents, indexer takes this corpus as

an input, identifies the dictionary terms, eliminates the stop words and builds the inverted index table T.

Fig. 1: Architecture of Constraint Word Clustering

Sub-knowledge

 Matrix

Sub-knowledge
 Matrix

Input Seed word (Sw)

Rule-Set

Affinity Sub-knowledge

Matrix Generator

Constraint

Generator

Constraint Word

Clustering

Algorithm

Word

Clusters

Dictionary
Term

Knowledge

 Matrix Component

Indexer Affinity Knowledge

Matrix Generator Source

Corpus

 CSV doc

Graphical

Tool

Clustering

Component

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 108

4.2.2 Affinity Knowledge Matrix Generator

Affinity knowledge matrix generator builds an affinity knowledge matrix. It is called knowledge matrix

because it contains knowledge of whole corpora. It contains information that identifies how two words are

closely associated. If inverted index table T contains information about N words, then corpus matrix generator

build a matrix of size N * N. It can be called as global knowledge affinity matrix corresponding to corpora C. It
takes inverted index table T as the input; find out the affinity between each pair of every term of inverted index

table. If size of inverted index table T is N terms then corpus matrix generator generates an N * N directional

affinity knowledge matrix. Directional Affinity between each pair of term is calculated using (2). Affinity
knowledge matrix represents the knowledge of corpora; it represents how the words are inter-related, degree of

closeness between words.

4.2.3 Affinity Sub-knowledge Matrix Generator

This component takes input as a seed word and find out the cloud of words which are highly affine with seed

word. Let us assume that size of word cloud is n. For each word of the cloud there respective word clouds are
generated. From this word cloud sub-knowledge matrix is generated of the size n * n.

4.2.4 Constraint Generator

There are mainly two types of constraints Must Link (ML) constraint and Can Not (CL) constraint. If two
objects are associated with ML constraint then they will belong to same group or class. On the other hand if two

objects are associated with CL constraint then they will belong to different group or class. Constraint generator

performs analysis of sub-knowledge matrix and find out the word cloud which are exactly similar. If the
directional average affinities of two clouds are equal then two clouds are having same properties and they have

same affinity behavior. If two word clouds are similar then there exist a must link constraint between them. Must

link constraint between any two words, enforce that the two words belong to the same cluster. Based on the
analysis of knowledge matrix and word cloud following constraints are investigated.

4.2.5 Constraint Word Clustering Algorithm

Constraint word clustering algorithm find words which are highly affine with seed words and cluster them in

such a manner that words in the same cluster are highly affine and words in the different cluster are less affine.

In the proposed algorithm, existing k-means clustering algorithm is modified using concept of constraints. In the

proposed constraints word clustering algorithm there are two major modifications, first modification is that
words are assigned to the centroid (clusters) according to constraints and affinity values. Second modification is

that centroid of cluster is one word it not mean of the cluster like in k-means. In the word assignment step of

constraint word clustering algorithm, if a word that belongs to RuleML and assigned to cluster Ci, then all others
words of RuleML are also moved to cluster Ci. Similarly, if a word that belongs to RuleCL and assigned to

cluster Ci, then all others words of RuleCL will not assigned to cluster Ci. Hence constraint clustering word

algorithm gives good quality of clusters.

4.3 Investigation and Generation of Constraints and Rulesets

4.3.1 Investigation of Properties and Constraints Generation Based on Word Cloud

Following word cloud properties are investigated:

Property 1. Symmetric Property

if wcloud(wi) = wcloud(wj) then wcloud(wj) = wcloud(wi) then it gives constraint: ML(wi,wj)

Property 2. Transitive Property

if wcloud(wi) = wcloud(wj) and wcloud(wj) = wcloud(wk) then wcloud(wi) = wcloud(wk) then it gives

constraint: ML(wi,wj, wk)

Property 3. Implicative Property

if wcloud(wi) = wcloud(wj) and if wcloud(wi) = wcloud(wk) then wcloud(wj) = wcloud(wk) then it gives

constraint: ML(wi,wj, wk)

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 109

4.3.2 Constraint Generation Based on Association between Words

Two words are said to be associated if they are having some affinity value between them. Words are
associated in either in one direction (forward or backword) or in both direction or not at all. Constratints are

investigated on the basis of association between words as follows:

1. Weak Association(One way association): In weak association either the word wa is associated with wb or word

wb is associated with wa. In weak association induces can not link constraint : CL(wa, wb)

2. Strong Association(Two way association): In strong association wa is associated with wb and word wb is also

associated with wa. Mathematically, Aff(wa, wb) ≠ 0 and Aff(wa, wb) ≠ 0, it induces no constraint.

3. Zero Association(no association): In strong association wi is not associated with wj and word wj is also not

associated with wi. Mathematically, Aff(wa, wb) = 0 and Aff(wa, wb) = 0. Zero Association induces can not link
constraint in forward as well as in backward direction: CL(wa, wb) and CL(wb, wa)

4.3.3 Rule Set for Generation for ML and CL Constraints

In this Rule set are generated from the ML and CL constraint, rule set guide the constraint word clustering to
obtain the desired partition.

4.3.3.1 Rule Set for Generation for ML Constraints

If wa is the common word between any two ML constraints, then ML constraint can be merged to form a

rule of must link constraint called as RuleML.

if ML1= ML(wa, wb) and ML2= ML(wc, wa) then Merge(ML1, ML2) => RuleML(wa, wb, wc) = wai ˅ wbi ˅ wci = 1

In general if a RuleML(w1, w2,…wl) contains l words then it is given by the boolean formula:

𝑤1𝑘 ∨ 𝑤2𝑘 ∨ … ∨ 𝑤𝑙𝑘 = 1 , where 𝑤𝑙𝑘 means word 𝑤𝑙 belong to k
th
 cluster.

4.3.3.2 Rule Set for CL Constraints
If wa is the common word between any two CL constraints, then CL constraint can be merged to form a rule

of can-not link constraint called as RuleCL. if CL1= CL(wa, wb) and CL2= CL(wc, wa) then Merge(CL1, CL2) =>

RuleCL(wa,wb,wc) = wai ˄ wbj ˄ wck = 1, where i ≠ j ≠ k . In general if a RuleCL(w1, w2,…wl) contains l words

then it is given by the boolean formula: 𝑤1𝑘 ∧ 𝑤2𝑘 ∧ … ∧ 𝑤𝑙𝑘 = 0, where 𝑤𝑙𝑘 means word 𝑤𝑙 belong to k
th

cluster and each word belongs to different cluster.

4.4. Algorithms
Algorithm 1: Affinity Knowledge Matrix

Explanation of Algorithm 1: In step 1, source corpus C is indexed and inverted index table T is created. In step

2-4 affinity between each pair of word is calculated and a affinity knowledge matrix is generated.

Input: A Corpus C consisting of documents such that C ={D1, D2,…,Dp}, each document D is set of words.

Output: Affinity Knowledge Matrix (AKM) of size N * N, where N is the number of words and Inverted

Index Table T.

1) Indexing of source corpus C to output inverted index table T, size of table T is N.

2) for i = 1 to N

3) for j = 1 to N

4)
𝐴𝐾𝑀[𝑖][𝑗] = 𝐷𝐴𝑓𝑓(𝑤𝑖 ∩ 𝑤𝑗) =

𝑃(𝑤𝑖 ∩ 𝑤𝑗)

𝑃(𝑤𝑗)

(1)

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 110

Algorithm 2: Word Clustering

Input: Seed word – Sw, Threshold affinity value – δ, number of clusters – k, Affinity Knowledge Matrix- AKM,

Inverted Index Table – T.

Output: k cluster of words

Explanation of Algorithm 2: In step 1 it is checked whether the input seed word belong to corpus or not. In

step 2, word cloud is generated corresponding to seed word Sw. Cw contains all words which are affine with Sw
and whose affinity value is less than δ. In step 3-4, word clouds are generated for all n belonging to Cw.. In step

5-7, spurious words are deleted from each word cloud, spurious words are that word which does not belong to

Cw or which are not affined with Sw. This step normalizes the size of each word cloud to n. In step 8, Sub

knowledge matrix is generated from n word cloud of size n * n. In step 9, Sub knowledge matrix is analyzed and
ML constraints are generated. In step 10-11, if a word belongs to more than one ML constraints then all ML

constraints are merged to form a rulelist. If ML constraints are not mutually related then, they ML constraints

will belong to different rulelists. In step 12, randomly k words are assigned as centroids of k-clusters. In step 13-
14 words are assigned to their respective clusters based on their maximum affinity with the centroids. In step 15-

16, if a word wr is an element of to a mlrulelist and belongs to a cluster Ci then all other words of same rule list

are assigned to cluster Ci and their status is updated to assigned so assigned words are not checked for
comparison and assignment. Step 18-28 is executed until there is no change in the centroids of two consecutive

iterations. In step 18-24, for each word of each cluster, word cloud is generated and after removal of spurious

words Cluster-knowledge matrix is generated. In step 25-26 average affinity of each word in cluster is

1) if 𝑆𝑤 ∈ 𝑇 then

2) Cw = WordCloud(AKM, Sw , δ) // Cw is the set of n words such that Cw = {w1, w2,.,.,wn}

3) for i = 1 to n

4) Wvi = WordCloud(AKM, wi)

5) for i = 1 to n

6) for j = 1 to sizeof(Wvi)

7) if 𝑤𝑖𝑗 ∉ 𝐶𝑤 then delete wi from Wvi. (wij stands for j
th
 word of i

th
 wordcloud of Wvi)

8) ASKM = AffintySubKnowledgeMatrix(Wv1, Wv2, . , . , Wvn)

9) Analyze ASKM, Let MLC = {ml1, ml2, ., ., ., mlq} are q ML constraints are investigated (refer)

10) ∀ 𝑖, 𝑙, 𝑚, if (𝑤𝑖 ∈ 𝑚𝑙𝑙) and (𝑤𝑖 ∈ 𝑚𝑙𝑚) then (where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙, 𝑚 ≤ 𝑞)

11) 𝑟𝑢𝑙𝑒𝑙𝑖𝑠𝑡 = 𝑚𝑒𝑟𝑔𝑒(𝑚𝑙𝑙 , 𝑚𝑙𝑚)

12) Assign k words as centroids c = {c1, c2, ., ., ., ck} of k clusters C= {C1, C2, ., ., ., Ck}

13) for i = 1 to k

14) 𝐶𝑖 = {𝑤𝑗: max (aff((𝑤𝑗 , 𝑐𝑖)) ∀ 𝑗, 1 ≤ 𝑗 ≤ 𝑛 } // Assignment step

15) if (𝑤𝑗 ∈ 𝑚𝑙𝑟𝑢𝑙𝑒𝑙𝑙𝑖𝑠𝑡) then

16) 𝐶𝑖 = {𝑤𝑟: (𝑤𝑟 ∈ 𝑚𝑙𝑟𝑢𝑙𝑒𝑙𝑖𝑠𝑡) ∀ 𝑤𝑟} // Assignment on the basis of constraints.

17) do the following until old centroids and new centroids are same

18) for i = 1 to k

19) ƞ =sizeof(Ci)

20) for j = 1 to ƞ

21) Ŵvj = WordCloud(SKM, ŵj) where, (ŵ𝑗 ∈ 𝐶𝑖)

22) for l = 1 to sizeof(Ŵvj)

23) if (𝑤𝑖𝑙 ∉ 𝐶𝑤) then delete wi from Ŵvj. (wil stands for l
th
 term of i

th
 word cloud of Ŵvj)

24) CKM = ClusterSubKnowledgeMatrix(Ŵv1, Ŵv2, . , . , Wvƞ)

25) for j = 1 to ƞ

26) 𝐴𝐴(𝑤𝑗) = ∑ 𝐶𝐾𝑀
ƞ
𝑚=1 [𝑗][𝑚] ƞ⁄

27) 𝑀𝑒𝑎𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐶𝑖) = ∀𝑤𝑗: (𝑤𝑗 ∈ 𝐶𝑖) ∑ 𝐴𝐴(𝑤𝑗)
ƞ
𝑗=1 ƞ⁄

28) 𝑐𝑖 = {𝑤𝑗: min(|MeanCluster(𝐶𝑖) − 𝑤𝑗|) ∀ 𝑗, 1 ≤ 𝑗 ≤ ƞ } // centroids update step

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 111

calculated. In step 27, new mean of each cluster is calculated. In step 28, word wj which is closest to the mean of

the cluster Cj is assigned as the new centroid cluster Cj.

5. Concluding Remarks

We proposed a method to identify and generate constraints between words that identify semantic similarity

measure between words and word clouds. We investigated different types of association between words and

identified constraints based on the investigated association between words. Moreover, a constraint based word

clustering algorithm is proposed. In the proposed approach, words clouds are compared rather than words, which
extract semantic meaning of words in the respective group of words or in the respective affinity sub-knowledge

matrix for the generation of constraints. Constraints provide guidance about the desired partition and make it

possible for clustering algorithms to increase the accuracy of clusters generated. Proposed approach is applicable
for symmetric as well as asymmetric relationship between words. Thus, constraint word clustering algorithm is

useful extension to conventional word clustering algorithm.

6. References

[1] Dagan, L. Lee, F. C. N. Pereira, “Similarity Based Model Of Word Co-Occurrence Probabilities”, Machine Learning -

Special issue on natural language learning archive, Kluwer Academic Publishers Hingham, MA, USA, Vol. 34, 1999,

pp. 43 – 69.

[2] D. Bollegala, Y. Matsuo, M. Ishizuka, “A Web Search Engine-Based Approach to Measure Semantic Similarity between
Words”, IEEE Transactions On Knowledge And Data Engineering, Vol. 23(7), 2011, pp. 977-990.

http://dx.doi.org/10.1109/TKDE.2010.172

[3] H. Li, N. Abe, “Word Clustering and Disambiguation Based on Co-occurrence Data”, Journal of Natural Language

Engineering, Vol 8(1),2002, pp. 25 – 42

http://dx.doi.org/10.1017/S1351324902002838

[4] Information Retrieval, C. J. Van Rijsbergen, Butterworth-Heinemann; 2nd edition (March 1979)

[5] Y. Karov, S. Edelman. “Learning similarity-based word sense disambiguation from sparse data”, In Proceedings of the

Fourth Workshop on Very Large Corpora, 1996, pp 1-18.

[6] P. F. Brown, V. J. DellaPietra, P. V. deSouza, J. C. Lai, R. L. Mercer, “Class-based n-gram models of natural

language”. Computational Linguistics, Vol.18(4), 1992, pp.467-479.

[7] F. C. N. Pereira, N. Tishby, L. Lee, “Distributional clustering of English words”, In 31st Annual Meeting of the

Association for Computational Linguistics, Somerset, New Jersey, 1993, pp. 183-190.
http://dx.doi.org/10.3115/981574.981598

[8] G. Maltese , F. Mancini, “An Automatic Technique to Include Grammatical and Morphological Information in a

Trigram- Based Statistical Language Model," in Proc. ICASSP, San Francisco, CA, 1992, pp. 157-160, 1992

http://dx.doi.org/10.1109/icassp.1992.225948

[9] I. Dagan, S. Marcus, S. Markovitch, “Contextual word similarity and estimation from sparse data”, In 31st Annual

Meeting of the ACL ,Somerset, New Jersey, 1993, pp. 164–171.

http://dx.doi.org/10.3115/981574.981596

[10] Dagan, I., Marcus, S., & Markovitch, S. “Contextual word similarity and estimation from sparse data”.Computer Speech

and Language,1995, Vol. 9, 123–152.

http://dx.doi.org/10.1006/csla.1995.0008

[11] M. Jardino and G. Adda, “Automatic Word Classification, Using Simulated Annealing”, in Proc.1993 ICASSP,
Minneapolis, MN,1993, pp. 41-44.

[12] M. Tamoto and T. Kawabata, “Clustering Word Category Based on Binomial Posteriori Co-Occurrence Distribution”, in

Proc. 1995 ICASSP, Detroit, MI, 1995, pp. 165-168.

[13] Sahlgren, Magnus, and Rickard Cöster. "Using bag-of-concepts to improve the performance of support vector machines

in text categorization." Proceedings of the 20th international conference on Computational Linguistics. Association for

Computational Linguistics, 2004.

http://dx.doi.org/10.3115/1220355.1220425

[14] Y. Liu, X. Wang, B. Liu, “A Feature Selection Algorithm for Document Clustering based On Word Co-Occurrence

Frequency”, in Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai,

2004, pp 2963-2968

[15] W. Zhou, Y. Du, H. Wang, X Lv, “Automatic identification of hierarchical relationship between words based on

clustering”, In International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), 2011, pp.
1585-1588.

http://dx.doi.org/10.1109/TMEE.2011.6199512

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 112

http://dx.doi.org/10.1109/TKDE.2010.172
http://dx.doi.org/10.1109/TKDE.2010.172
http://dx.doi.org/10.1109/TKDE.2010.172
http://dx.doi.org/10.1017/S1351324902002838
http://dx.doi.org/10.1017/S1351324902002838
http://dx.doi.org/10.1017/S1351324902002838
http://dx.doi.org/10.3115/981574.981598
http://dx.doi.org/10.3115/981574.981598
http://dx.doi.org/10.3115/981574.981598
http://dx.doi.org/10.1109/icassp.1992.225948
http://dx.doi.org/10.1109/icassp.1992.225948
http://dx.doi.org/10.1109/icassp.1992.225948
http://dx.doi.org/10.3115/981574.981596
http://dx.doi.org/10.3115/981574.981596
http://dx.doi.org/10.3115/981574.981596
http://dx.doi.org/10.1006/csla.1995.0008
http://dx.doi.org/10.1006/csla.1995.0008
http://dx.doi.org/10.1006/csla.1995.0008
http://dx.doi.org/10.3115/1220355.1220425
http://dx.doi.org/10.3115/1220355.1220425
http://dx.doi.org/10.3115/1220355.1220425
http://dx.doi.org/10.3115/1220355.1220425
http://dx.doi.org/10.1109/TMEE.2011.6199512
http://dx.doi.org/10.1109/TMEE.2011.6199512
http://dx.doi.org/10.1109/TMEE.2011.6199512
http://dx.doi.org/10.1109/TMEE.2011.6199512

[16] D.L. Marvit, J. Jain, S. Stergiou, A. Gilman, B.T. Adler, J.J. Sidorowich, “Identifying Clusters of Words According To

Word Affinities”, Google Patents, 2009,12/242,957.

[17] K. Wagsta, C. Cardie , “Clustering with Instance-level Constraints”, Proceedings of the Seventeenth International

Conference on Machine Learning, 2000, pp. 1103-1110.

2015 International Conference on Computer, Control and Communication Technologies (CCCT'15) June 15-16, 2015 Bangkok (Thailand)

http://dx.doi.org/10.17758/R615506 113

