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Abstract: Queuing network techniques are effective for evaluating the performance of computer systems. We 

discuss a queuing network technique for a computer system with input to terminals. The finite number of termi-

nals exists in the network and a job arrives randomly from outside of the terminal. After a think-time at the ter-

minal, the job moves to the server, and it acquires some parts of memory and executes CPU and I/O processing 

in the server. After the job completes CPU and I/O processing, it releases the memory and goes back to its own 

terminal. However, because the terminal and the memory resource can be considered as a secondary resource 

for the CPU and I/O equipment, the queuing network model has no product form solu-tion and cannot be calcu-

lated the exact solutions.  

     We proposed here an approximation queuing network technique for calculating the performance measures of 

a computer system with input to terminals on which multiple types of jobs exist. This technique involves dividing 

the network into two levels; one is “inner level” in which a job executes CPU and I/O processing, and the other 

is “outer level” that includes terminals and communication lines. By dividing the network into two levels, we can 

prevent the number of states of the network from increasing and approximate the performance measures of the 

network. We evaluated the proposed approximation technique by using numerical experiments and clarified the 

characteristics of the system response time and the mean number of jobs in both level. 

Keywords: performance evaluation, queuing network, central server model, a computer system with input to 

terminals 

1. Introduction 

Queuing network techniques are effective for evaluating the performance of computer systems. In computer sys-

tems, two or more jobs are generally executed at the same time, which causes delays due to conflicts in accessing 

hardware or software resources such as the CPU, I/O equipment, or data files. We can evaluate how this delay affects 

the computer system performance by using a queuing network technique. Some queuing networks have an explicit 

exact solution, which is called a product form solution [1]. With this solution, we can easily calculate the performance 

measures of computer systems, for example the busy ratio of hardware and the job response time. However, when the 

exclusion controls are active or when a memory resource exists, the queuing network does not have a product form 

solution. To calculate an exact solution of a queuing network that does not have a product form solution, we have to 

construct a Markov chain that describes the stochastic characteristics of the queuing network and numerically solve its 

equilibrium equations. When the number of jobs or the amount of hardware in the network increases, the number of 

states of the queuing network drastically increases. Since the number of states of the queuing network is the same as 

the number of unknown quantities in the equilibrium equations, the number of unknown quantities in the equilibrium 

equations also drastically increases. Therefore, we cannot numerically calculate the exact solution of the queuing net-

work. Moreover, when the queuing network is an open model where jobs arrive from or depart for the outside of the 

network, the number of states of the network can become infinite (the number of jobs can be infinite), and we cannot 

actually calculate an exact solution. 

Here we discuss the queuing network model for computer systems with input to terminals (Figure. 1). In the mod-

el, the job arrives randomly from the outside to the network and acquires a terminal. If all terminals are occupied, the 
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job joins the system waiting queue and wait until a terminal becomes available. After a think-time at the terminal, the 

job moves to the server and acquires some parts of the memory and exe-cutes CPU and I/O processing. When the job 

completes CPU and I/O processing at 

the server, it releases the memory and 

goes back to its own terminal. This 

model resembles that a customer enters 

and leaves an ATM (Automated Teller 

Machine) terminal.  

Since a job executes CPU and I/O 

processing occupying the terminal and 

the memory, they can be considered as 

a secondary resource for the CPU and 

I/O equipment. Generally, when a 

queuing network includes a secondary 

re-source, it does not have product 

form solutions       

To get the strict solution of the  

Model, we  have to construct  a                                            Fig 1. Central server model with input to terminals 

Markov chain which de-

scribes the entire model 

and have to numerically 

solve its equilibrium equa-

tions. In order to prevent 

the number of states of the 

Markov chain from in-

creasing, we divide the 

model into two levels, one 

is outer level that includes 

the terminals and commu-

nication lines, and the oth-

er is inner level that in-

cludes CPU, I/O equip-

ment and memory re-

sources (Figure 2).                                                              Fig 2. Concept of approximation 

In the same ways as [8][9], there are multiple types of job class exist in the network. Each job class behaves dif-

ferently in the outer level and the inner level. Although both the inner level and the outer level has a product form 

solution when the model has solution when the model has a single job class, the both level does not have a product 

form solution when the model has multiple job classes. Therefore, an approximation technique for the both level is 

needed to analyse its performance measures. 

In this paper, we have proposed an approximation technique for calculating the performance measures of a com-

puter system with input to terminals. We previously reported multiple job class including memory resource model 

arrived randomly from the outside [8] and a model in which a job moves back and forth between a terminal and a 

network [9]. In this research, we report a model in which a job arrives via a terminal from the outside including the 

memory resource. 

Dividing the model into two levels is one of two-layer queuing network techniques [3]. Our proposed technique is 

also a two-layer technique for a computer system with input to terminals. In our previous study [4], we reported an 

approximation technique for evaluating performance of computer systems with file resources. Meanwhile, heteroge-
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neous parallel computer systems 

with distributed memory was re-

searched in [6], and the Markov 

chain involving two dimensional 

state transition similar to our pro-

posed model was discussed in [7]. 

2. Model Description 

The CPU and I/O model in the 

inner level is equivalent to the or-

dinary central server model with 

multiple job types (each of which 

is called a job class). In this model, 

R job classes exist, and each of 

them is numbered r = 1, 2, … , R  

by affixing r. We denote nr as the 

numbers of jobs of job class r in 

the central server model and n as 

the total number of jobs in the cen-

tral server model. We also denote 

ir as the number of jobs of job 

class r in the inner level (the dif-

ference of nr and ir is the number 

of jobs in the system waiting 

queue 1). The inner level consists 

of single CPU node and multiple 

I/O nodes. We denote M as the 

number of I/O nodes. The I/O 

nodes are numbered m = 1, 2, … , 

M by affixing m, and the CPU 

node is numbered m = 0 by also affix-

ing m. The service rate of job class r 

at the CPU node is η0
r
, and the 

service rate of job class r at an I/O 

node m is ηm
r
. The service time at 

each node is a mutually independ-

ent random variable subject to common 

exponential distributions. Jobs are scheduled on a first come first served (FCFS) principle at all nodes. At the end of 

CPU processing, a job probabilistically selects an I/O node and moves to it, or completes CPU and I/O processing and 

goes  back  to  i t s  own  t e rmina l .  The  se l ec t ion  p robab i l i t y  o f  I /O  node  m  o f  j ob  c las s  r  i s 
r

mp ),,2,1;,,2,1( RrMm   and the completion probability of job class r is rp0
. Therefore, 




M

m

r

mp
0

1  

)....,,2,1( Rr   

    In the outer level, there are K terminals exist and the job arrives randomly from the outside to the network and 

acquires a terminal. If all terminals are occupied, the job joins the system waiting queue and wait until a terminal 

becomes available. When the job completes the CPU and I/O processing in the central server model, it returns to 

its own terminal. We denote kr as the number of jobs of the job class r (r = 1, 2, ... , R) acquiring the terminal. 

These kr are not constant and Kk
R

r

r 
1

 holds.  
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      The job stays in the terminal for short while. The staying time is called “think-time”. The think-time is mutu-

ally independent random variable subject to common exponential distribution with parameter νr of job class r (νr 

is job departure rate from the terminal). 

     Memory resources are added to this central server model (Figure 1). We denote 
rS  as the number of the units 

of the memory acquired by a job of job class r and S as the total number of the units of the memory. After the 

think-time, a job of job class r moves to the inner level, and requests and acquires 
rS  units of the memory before 

entering the central server model. If sufficient units of the memory do not available, the job joins the system 

waiting queue 1 and waits for the memory to be released by another job. When the job completes CPU and I/O 

processing, it releases the memory and leaves the inner level and goes back to its own terminal in the outer level. 

Since the job has to acquire the memory before entering the central server model, the total number of units of the 

occupied memory in the central server model has to be less than or equal to S, i.e. .
1

SSn rr

R

r




 

    By replacing “CPU → outer level transition” with “CPU → CPU transition,” the central server model is modi-

fied to a closed model in which the number of jobs is constant (Figure 2). 0049n this modified model, when 

“CPU → CPU transition” occurs, we consider as the job terminates and a new job is born. Therefore, the mean 

job response time is the mean time between two successive “CPU → CPU transitions.” This means that the job 

response time can be considered as the job lifetime. 

3. Approximation Model 

   We use the following notations.  

tr : mean think-time of job class r 

νr : departure rate from the terminal of job class r 

τrm : mean total service time of job class r at node-m in the central server model  

Sr : number of units of memory acquired by a job of job class r 

S : total number of units of memory resorce 

nrm : number of jobs of job class r at node-m in the central server model (r=1, 2, ..., R; m=0, 1, ... , M) 

nr : number of jobs of job class r in the central server model 

n = (n1, n2, ... , nR) : vector of number of jobs in the central server model (nr =0, 1, 2, ..., kr) 

ir : number of jobs of job class r in the inner level 

kr : number of jobs of job class r in the network (= number of terminals of job class r) 

n
*
 = (n10, n11, ... , n1M, n20, n21, ... , n2M, ... , nR0, nR1, ... , nRM) : state vector of the central server model 

)()},1,0(0,|{)( 2211

0

* SSnSnSnMmnnnnnF RRmr

M

m

m  


  

: set of all feasible states of the central server model when the number of jobs of job class r is nr 

Ps (n
*
) : steady-state probability of state n

*
 

Tn
r
 : mean job response time of the central server model when the vector of number of jobs is n 

μn
r
 : completion rate from the central server model of job class r 

T 
r
 : system response time of job class r (= lifetime of job class r) 

3.1. Inner level 

Since the central server model in the inner level is equivalent to the ordinary central server model with mul-

tiple job classes, it has the product form solution. Then the steady-state probability Ps(n*) is represented by the 

following formula [1][2]. 
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Ps (n
*
) = 

),,,,( 21

1 0

Mnnn R

R

r

M

m

n

rm
rm




  , where  

  


)( 1 0

21 ),,,,(
nFn

R

r

M

m

n

rmR
rmMnnn    is the normalizing constant of steady-

state probabilities when the number of jobs of job class r in the central server model is nr (=0, 1, 2, … , kr ; r =1, 2, ... , 

R). From these steady-state probabilities, we can calculate the mean job response time Tn
r
 of job class r as 

),,,1,,(

),,,,,(

1

1

Mnnn

Mnnnn
T

Rr

Rrrr

n











, when the number of jobs in the central server model is nr. 

     The memory resource in inner level can be considered as an M/M/S queuing model with S servers. In an ordinary 

M/M/S queuing model, the service rate at a server is constant, regardless of the number of guests in the service. In the 

memory resource of our model, however, the service rate changes depending on the number of occupied memories. 

The mean job response time Tn
r
 of job class r (=1, 2, ... , R) when the vector of number of jobs is n

 
= (n1, n2, ... , nR) is 

equal to the mean time while the memory is occupied. Since the completion rate μn
r
 of job class r from the central 

server model is denoted as  μn
r

r

nT

1
 , μn

r
 also depends on n

 
= (n1, n2, ... , nR), that is the number of jobs in the central 

server model. The state transition of the M/M/S queuing model with two job classes is shown in Figure 3, where the 

completion rates from the central server model change depending on the number of jobs in the central server model. 

This is a two dimensional birth-death process. The equilibrium equations with the steady-state probability QS(i1, i2), 

when the total number of the units of the memory is S and the number of jobs in the inner level is (i1, i2), are as fol-

lows (similar to the case with higher dimensions). Where sr is the maximum integer such as ,SSs rr  i.e.  rr SSs ／ . 

(1) i1=0, i2=0 

(k1ν1+ k2ν2) QS (0, 0) = μ10
1
QS (1, 0) + μ01

2
  QS (0, 1)  

(2) 0,0 211  iSSi  

{(k1－i1) ν1+ k2ν2 + i1
1

01i
 }   QS (i1, 0) 

    = (k1－i1+1) ν1   QS (i1－1, 0) + (i1+1) 1

101i   QS (i1+1, 0) + 2

11i
   QS (i1, 1) 

(3) 0,, 21111  ikiSiS  

{(k1－i1) ν1+ k2ν2 +
1

01 1s
s  }   QS (i1, 0) = (k1－i1+1) ν1   QS (i1－1, 0) + 1

01 1s
s    QS (i1+1, 0) + 2

11i
   QS (i1, 1) 

(4) 0, 211  iki  

(k2ν2 +
1

01 1s
s  )   QS (k1, 0) = ν1   QS (k1－1, 0) + 2

11k   QS (k1,1) 

(5) SSii  221 0,0  

{k1ν1 + (k2－i2) ν2 + i2
2

0 2i
 }   QS (0, i2)  

= (k2－i2+1) ν2   QS (0, i2－1) + 1

1 2i
   QS (1, i2) + (i2+1) 2

10 2i   QS (0, i2+1) 

(6) 
22221 ,,0 kiSiSi   

{k1ν1 + (k2－i2) ν2 +
2

02 2Ss  } QS (0, i2) = (k2－i2+1) ν2 QS (0, i2－1) + 1

1 2i
 QS (1, i2) + s2

2

0 2s QS (0, i2+1) 

(7) 
221 ,0 kii   

(k1ν1 +
2

02 2ss  ) QS (0, k2) = ν2 QS (0, k2－1) + 1

1 2k QS (1, k2) 

(8) SSiSiii  221121 )1()1(,0,0  

{(k1－i1) ν1 + (k2－i2) ν2 + i1
1

21ii + i2
2

21ii }   QS (i1, i2) = (k1－i1+1)
1 QS (i1－1, i2)  

+ (k2－i2+1)
2 QS (i1, i2－1) + (i1+1) 1

1 21 ii    QS (i1+1, i2) + (i2+1) 2

121 ii   QS (i1, i2+1) 

(9) SSiSiii  221121 ,0,0  and 
2211 )1( SiSiS   

{(k1－i1) ν1 + (k2－i2) ν2 + i1
1

21ii + i2
2

21ii } QS (i1, i2) = (k1－i1+1)
1   QS (i1－1, i2)  

+ (k2－i2+1)
2   QS (i1, i2－1) + i1

1

21ii   QS (i1+1, i2) + (i2+1) 2

21ii   QS (i1, i2+1) 

(10) SSiSiii  221121 ,0,0  and 
2211 )1( SiSiS   

{(k1－i1) ν1 + (k2－i2) ν2 + i1
1

21ii + i2
2

21ii }   QS (i1, i2) = (k1－i1+1)
1   QS (i1－1, i2)  

+ (k2－i2+1)
2   QS (i1, i2－1) + (i1+1) 1

21ii   QS (i1+1, i2) + i2
2

21ii   QS (i1, i2+1) 
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(11) 
22112211 0,0, kikiSiSiS   

),( 21 ii denotes the set of the shortest routes from (0, 0) to (i1, i2), and there is the lattice point (j1, j2) on a route 

),( 21 iiu   such as SSjSj  2211
 and 

2211 )1( SjSjS   or 
2211 )1( SjSjS  . When we denote the steady-state 

probability along the route u as ),( 21
21 iiQ

jj

S
, the following equilibrium equation holds. 

    ),(})(){( 21

2

2

1

1222111
21

2121
iiQijikik

jj

Siiii    

)1,()1(),1()1( 2122221111
2121  iiQikiiQik

jjjj

SS  )1,(),1( 21

2

221

1

1
21

21

21

21
 iiQjiiQj

jjjj

SjjSjj   

     ),( 21 iiQS
 can be represented as 

.),(),(

),(
),(

2121

21

21

21




uonisjj
iiu

SS iiQiiQ
jj  

    For the state (i1, i2) of  the Markov chain, when SiSi 211  ,S all jobs are in the central server model and executing 

CPU and I/O processing, and when ,2211 SiSiS   some jobs are in the system waiting queue 1 and waiting for a 

part of the memory to be released. The transition diagram of the two dimensional birth-death process is shown in Fig-

ure 3. However, the equilibrium equations do not have the product form solution. Therefore, some approximation is 

required to solve it.  

When the model has a single job class, it can be described with a one dimensional birth-death process. Its transi-

tion diagram is shown in Figure 4, and the equilibrium equations are as follows: 

 

(1) k1 ν1 QS (0)＝μ1
1
  QS (1) 

(2) {(k1－i1) ν1+ i1
1

1i
 }   QS (i1) = (k1－i1+1) ν1   QS (i1－1)+(i1+1) 1

11i   QS (i1+1)  (0＜i1S1≦S)  

(3) {(k1－i1) ν1+s1
1

1s
 }   QS (i1) = (k1－i1+1) ν1   QS (i1－1) +s1

1

1s
   QS (i1+1)   (S＜i1S1＜k1) 

(4) 1

1 1s
s    QS (k1) = ν1   QS (k1－1) 

 

The solutions for the equilibrium equations are 

described in the following product form. 





















































),,1(
)1()1()()1(

)0(

),,2,1(
)1(

2

)1(

1
)0(

)(

1111

1

111

1

1

111

1

1

111

1
1

11

111

1

111

1

2

11

1

1

11

1

111

1

1

ksi
s

ik

s

sk

s

sk

i

ik
Q

si
i

ikkk
Q

iQ

sss

s

i i

S

i

S

S

































 

In this formula, for the state transition at i =1, 

2, ..., s1－ 1, multiply by factor ,
)1(

1

11

ii

ik







  

while for the state transition at  i = s1, s1+1, ..., k1 

multiply by factor 
1

1

11

1

)1(

ss

ik







 . 

    For two dimension case, we consider a short-

est route from lattice point (0, 0) to (i1, i2) shown 

in Figure 5, and for the horizontal state transi-

tion at the lattice point (i1, i2) such as 

11Si SSi  22
 on the route, multiply by factor 

2

2

1

1

111

2121

)1(

iiii ii

ik







 , and  multiply by factor 

2

2

1

1

222

2121

)1(

iiii ii

ik







  for the horizontal state transition, 

When the lattice point (i1, i2) such as S  
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221 SiSi  , for the state transi-

tion outside of the lattice point 

(j1, j2) such as SSjSj  2211
 

and
2211 )1( SjSjS  or

SSjSj  2211 )1(  

on the route (between(j1,j2) and 

(i1 , i2)), multiply by factor 

2

2

1

1

111

2121

)1(

jjjj jj

jk







  for the horizon-

t a l  s t a t e  t r a n s i t i o n 

or
2

2

1

1

222

2121

)1(

jjjj jj

jk







 for the verti-

cal state transition Thus, the 

coefficient of QS(i1, i2) related to 

QS(0, 0) is represented as the 

summation of the product along 

a l l  t h e  r o u t e s  f r o m  

(0, 0) to (i1, i2). For example, for 

the route from (0, 0) to (1, 2) 

when S=4, S1=2, S2=1, and k1=5, 

k2=4, which is the case 

of SSiSi  2211
(2i1 ),42  i the 

product along the route of bro-

ken line (i) in Figure 5 is 


2

02

2

2

01

2

2

45
)0,0(








SQ  

2

12

1

12

1
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. For the route from (0, 0) to (3, 2), which is the case of ,2211 SiSiS  ),24( 21 ii  the multiplication along 
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Since there are multiple routes from (0, 0) to (i1, i2), the coefficient of QS(i1, i2) related to QS(0, 0) is approximately 

represented as the total of the products along all routes from (0, 0) to (i1, i2). Similar to the case above, we can approx-

imate the state probability of a queuing network with multiple job classes when R >2. 

3.2. Outer level 

Figure 6 shows a state transition diagram of the outer level. The outer level is also expressed in a two-

dimensional  

birth-death process. In the dashed-line triangle of Figure 6, all jobs are in a state of acquiring a terminal. Unlike 

the inner level, it is an open queuing network where the number of jobs in each class can be infinite. The equilib-

rium equations with the steady-state probability UK(k
*
)= UK(k1, k2), when the number of terminals is K and the 

number of occupied terminals is k
*
=(k1, k2), are as follows (similar to the case with higher dimensions).  

 
(1) k1=0, k2=0 

   (λ1+λ2) UK (0, 0) = ν10
1
UK (1, 0) +ν01

2
UK (0, 1) 

(2) k1=1, 2, ... , 1K , k2=0 
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    (λ1+λ2+k1
1

01k ) UK (k1, 0) = λ1  )0,1( 1 kUK
 + (k1+1)

 
1

101k UK (k1+1, 0) + 2

11k UK (k1, 1) 

(3) k1= K, K+1, ..., k2=0 

    (λ1+λ2+ K 1

0K ) UK (K, 0) = λ1  )0,1(KUK
K 1

0K UK (K+1, 0) + 2

1K UK (K, 1) 

(4) k1=0, k2= 1, 2, ... , 1K  

(λ1+λ2+k2
2

0 2k ) QS (0, k2) = λ2  )1,0( 2kUK
1

1 2k QS (1, k2) + (k2+1) 2

10 2k UK (0, k2+1) 

(5) k1=0, k2= K, K+1, ... 

(λ1+λ2+K 2

0K ) UK  (0, K) =λ2   )1,0( KU K
1

1K UK (1, K) +K 2

0K UK (0, K+1)  

(6) k1+k2≦ 1K , k1=1, 2, .. , 2K , k2=1, 2,.., 2K  

(λ1+λ2+k1
1

21kk +k2
2

21kk ) UK (k1, k2) =λ1   ),1( 21 kkUK
λ2   )1,( 21 kkUK

(k1+1)
 

1

1 21 kk  UK (k1+1, k2) + 

(k2+1)
 

2

121 kk UK (k1, k2+1) 

 (7) k1+k2= K, k1=1, 2, ... , 1K , k2=1, 2, ... , 1K  

     (λ1+λ2+k1
1

21kk +k2
2

21kk ) UK (k1, k2) =λ1   ),1( 21 kkUK
λ2   )1,( 21 kkUK

k1
1

21kk UK (k1+1, k2) + 

k2
2

21kk UK (k1,    k2+1) 

 

(8) k1+k2> K, k1=1, 2, ... , k2=1, 2, ...  

When the lattice point (l1, l2) such as l1+l2=K Solution the shortest route l from (0, 0) to (k1, k2) and ),( 21 kkU l

K
 

is the state probability along the route l of the state (k1, k2),   

     (λ1+λ2+l1
1

21ll + l2
2

21ll )  ),( 21 kkU l

K
= λ1   )0,1( 1kU l

K
λ2   )1,0( 1kU l

K
 l1

1

21ll  ),1( 21 kkU l

K  + 

 l2
2

21ll  )1,( 11 kkU l

K
). 

(a) k1+k2> K, k1=1, 2, ... , K , k2=1, 2, ... , K 



1

2

),(),( 2121

k

kKl

l

KK kkUkkU  

(b) k1+k2> K, k1=K+1, K+2, ... , k2=1, 2, ... , K 



K

kKl

l

KK kkUkkU
2

),(),( 2121
 

(c) k1+k2> K, k1=1, 2, ... , K , k2=K+1, K+2, ... 

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1

0

2121 ),(),(
k

l

l

KK kkUkkU  

(d) k1+k2> K, k1= K+1, K+2, ... , k2=K+1, S+2, ... 



K

l

l

KK nnUkkU
0

2121 ),(),(  

4. Numerical Experiments 
 
    We evaluated the proposed approximation technique through numerical experiments. We used the following 

parameters. 

 

1. Number of terminals: K = 10    5. Think-time and arrival rate: 

2. Number of memory resources: S = 5      ・Figure 7, 8 

3.  Number of I/O nodes: M = 2     (t1, t2) = (2.0, 1.0)  

4. Total service time at each node    (λ1, λ2) = (0.05, 0.1), (0.06, 0.1),…, (0.2, 0.1) 

τ10=1.0, τ11=τ12=1.0, τ20=1.0, τ21=τ22=0.5,     ・Figure 9, 10 

where τrm is the total service time of job class    (t1, t2) = (1.0, 1.0), (1.1, 1.0),…, (2.5, 1.0) 

r at node m.       (λ1, λ2) = (0.2, 0.1) 

where tr is the mean think-time of job class r and  

λr is the arrival rate of job class r (r= 1, 2) 
 

6th International Conference on Chemical, Agricultural, Environmental and Biological Sciences (CAEBS-17) Dec. 7-8, 2017 Paris (France)

https://doi.org/10.17758/ERPUB.ER1217248 113



Figures 7 ~ 10 show the mean system response times and mean numbers of job as in the inner level of job 

classes 1 and 2 respectively, when the arrival rate λ2 is fixed and λ1 change from 0.05 to 0.2 by 0.01, and the 

think-time t2 is fixed at 1.0 and t1 change from 1.0 to 2.5 by 0.01. The mean system response time is the mean 

time from job arrival to departure from the network (that is the mean time of moving between terminal and the 

central server model plus the think-time at the terminal). Similar to the case of a single job class, the mean sys-

tem response time for both job class increases monotonically in a convex curve. When the think-time of job 

class 1 increases, the mean number of jobs in the inner level increases linearly along increasing of the think-time 

of job class 1.  

5. Conclusion 

We proposed an approximation technique for evaluating the performance of a computer system with input to 

terminals using a queuing network technique and analyzed its performance measures through numerical experi-

ments. The concept of the approximation is based on separately analyzing the inner level (CPU, I/O equipment, 

and memory) and the outer level (terminals and communication lines). The numerical experiments clarified the 

characteristics of the system response time. 

   In the future we plan to examine the accuracy of the proposed approximation technique by comparing it 

with exact solutions or simulation results. 

Fig. 7: Mean number of jobs in the central server modal 

 
Fig.8: Mean system response time 

 

 

 

 

 

 

Fig. 9: Mean number of jobs in the central server modal 

 

 

 

 

 

 

 

 

 

 

 

 Fig.10: Mean system response time 
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