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Abstract: In this paper, we study the effect of an open transverse crack on the vibratory behavior of a rotor 

using the classical version of MEF, the finite element Euler-Bernoulli beam is used for the discretization of this 

rotor. The equation of motion is obtained by the application of the Lagrange equation on the kinetic and 

deformation energies of the different components of the rotor taking into account the variation of the stiffness of 

the shaft due to the crack, A program which allows us to plot the Campbell diagram to determine the natural and 

critical frequencies of a cracked and uncracked rotor is developed in MATLAB. After the validation of the results 

found by our program with results of a simulation with ANSYS Workbench which we have done, and also with 

experimental results. We study the influence of the position and the depth of the crack on the natural and critical 

frequencies, this study helps us to detect cracks in the rotor’s shaft. 
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1. Introduction  

Rotors have extensive applications in many industrial machines, they are widely used in turbines, 

compressors, pumps, motors ... etc. Continuous loads on the rotors can lead to unpredictable damage and failure 

such as cracks. This damage leads to dangerous, destructive and catastrophic scenarios. 

Over the past three decades, many researchers have worked and provided theoretical and experimental work 

to study the dynamics of cracked and uncracked rotors. Comments on cracked rotors can be found in [1-3]. The 

breathing and the open model of the transverse crack are considered to be the main theories to study the 

vibratory behaviour of cracked rotor systems. 

The presence of cracks causes a local variation in the stiffness of the shaft of the rotor. The techniques used 

to formulate this variation, while using the FEM, are the flexibility matrix method and the method of the time-

varying stiffness. The flexibility matrix method is the most common technique for formulating the stiffness 

matrix of a cracked element of the rotor [4-7], The time-varying stiffness method which uses the formulas of the 

moments of inertia of an asymmetric rod in space is translated by a reduction of the moments of inertia around 

the axes of rotation of the cracked element, this method was used in [8] and [9] to study the model of the open 

cracks and in [10-12] to study the breathing cracks. 

Previous studies in the field of cracked rotors show that the response of the cracked rotor is slightly different 

from the uncracked rotor, the natural and critical frequencies of a cracked and uncracked rotor have a gap that 

can be used to identify the presence and depth and position of the crack. 

In our work, we use the classical finite element method and the time-varying stiffness method to study the 

influence of an open transverse crack on the dynamic behavior of a rotor. This study makes it possible to 

determine the presence, as well as the depth and the position of the crack. A program that allows us to generate 

the Campbell diagram to identify the natural and critical frequencies of a cracked and uncracked rotor has been 

realized in MATLAB, after the validation of our results with a results that obtained by a simulation with ANSYS 

Workbench that we are done and with experimental results given by [9], we study the influence of the position 

and the depth crack on the natural and critical frequencies of a rotor.  

2. Equation of Motion  

The rotor consists of a shaft resting on bearings and comprising one or more disks. It can also have 

solicitations like unbalance or other external forces.  
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The equations of motion are obtained by the application of the Lagrange equation to the kinetic energies 

and deformation of the rotor components (shaft-disk-bearings): 
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2.1. Kinetic Energy of the Disk 
The disk is considered rigid and therefore characterized by its kinetic energy only, the expression of this 

latter is: 
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2.2. Kinetic and Deformation Energy of the Shaft 
For an element of length Le, the expression of the kinetic energy will be given by: 
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The energy of deformation of the shaft is calculated by considering the case of a flexible beam in rotation 

without deformation at the shear force (Euler-Bernoulli beam), the expression of the energy of deformation of 

the shaft will be given by: 

   
 

 
∫    

   

  
  

  

 
    

   

  
       

   

  

   

  
                                                         (6) 

For a healthy element, the moments of inertia along the axes X and Z are equal to           ⁄  and 

     , but in the case of a cracked element where the section is not circular (Figure 1), the crack causes an 

asymmetry in the course of the rotation, according to ref [12] the moments of inertia along the x and z axes are 

given by: 
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Where        is the ratio between the depth of the crack and the radius of the shaft (0≤    ≤1) and 

  √      . 

According to ref [13] the moments of inertia along the x and z axis (rotating reference) with respect to the 

moments of inertia along the axis X and Z (fixed reference) are: 
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From equations (7) and (8) we deduce the relations of moments of inertia of a cracked section along the X 

and Z axes (fixed reference), which are given by: 
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Fig. 1: Cross-section of a cracked element. 

The moments of inertia in equation (9) are variable with respect to the angle of rotation Ωt, this means that 

the system is non-linear, whereas in the literature, the systems with open cracks are considered linear. In our 

work, we linearize the system of equation by taking the mean values of each moment. 

2.3. Virtual Work of the Bearings 
The virtual work of the forces due to the bearings acting on the shaft is: 

                                    ̇       ̇       ̇       ̇            (10) 

 It can be put in the matrix form: 
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Where Fu and Fw are the generalized force. 

3. Matrix Formulation 

After the application of the Lagrange equation on the kinetic and deformation energies of the rotor 

components, taking into account the variation in the shaft’s stiffness due to the crack, we used classical version 

of the FEM and the time-varying method to determine the global matrices of the equation of motion [11]: 
[ ] ̈  ([  ]   [ ]) ̇  ([  ]  [ ])                                                 (12) 

Where: 

[M] is the global mass matrix which comprises the mass matrix of the disk and the shaft. 

[G] is the global gyroscopic matrix that includes the gyroscopic matrix of the disk and the shaft. 

[K] is the global stiffness matrix of the shaft which comprises the stiffness matrix of the cracked element 

assembled with the matrices of other elements replacing the matrix of the healthy element by the matrix of 

cracked element. 

[Cp] and [Kp] are the damping and stiffness matrices of the bearings. 

q is the vector of generalized coordinates. 

F is the vector of unbalance forces, in our work, this vector force is neglected. 

Ω is the rotation speed in rd/s. 

The natural and critical forward and backward frequencies are obtained from the eigen solution of the 

matrix given as: 

     [
  

             
]                                                    (13) 

4. Validation of Results 

Figure 2 shows the finite element model of the rotor studied by [9], the rotor is discretized in 6 elements, 

Figure 3 shows the model studied in the ANSYS Workbench simulator, and the physical parameters of this rotor 

are presented in table 1. 
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Figures 4, 5, 6 and 7 present Campbell's diagrams of a cracked and uncracked rotor generated by our 

program and by ANSYS Workbench. From these diagrams we can determine the values of the natural and 

critical frequencies of different cases of position and depth of the crack. 

Tables 2, 3 and 4 show the gap between the natural and critical frequency values found by our MATLAB 

program and the results found by ANSYS Workbench where the crack depth ratio equals to μ=0.46, and the 

crack is found in the second element where the distance between the left bearings and the crack is equal to 0.14 

m. 

Tables 4, 5 and 6 show the differences between the critical frequencies values of a cracked and uncracked 

rotor found by our MATLAB program and the results of the experimental [9]. 

 

 

Fig. 2: Finite element model of the rotor studied. 

 

 

Fig. 3: Model of the rotor studied in ANSYS Workbench. 

 

TABLE 1: Physical parameters of the rotor studied 
Young's Module (E) 2.1e11 N/m2 

Length of the shaft (L) 0.65 m 

Density of the shaft (  ) 7800 kg/m3(Steel) 

Number of disks 2 

Position of the disk 1 0.124 m (from the left bearings) 

Position of the disk 2 0.6 m (from the right bearings) 

Inner radius of the disks (R) 0.795e-3 m 

External radius of the disks (r) 76.2e-3 m 

Thickness of the disks (e) 11.72e-3 m 

Density of the disk (  ) 2700 kg/m3(Aluminum) 

Stiffness of bearings 1 and 2 (kxx,kzz) 7e7 N/m 

Damping of bearings 1 and 2 (cxx,czz) 5e2 Ns/m 
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Fig. 4: Campbell diagram of uncracked rotor generated by ANSYS Workbench. 

 
Fig. 5: Campbell diagram of uncracked rotor generated by our program of MATLAB. 

 
Fig. 6: Campbell diagram of cracked rotor generate by ANSYS Workbench where the crack is located in 0.14 m 

from the left bearing and μ=0.46. 
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Fig. 7: Campbell diagram of uncracked rotor generate by our program of MATLAB where the crack is located in 0.14 m 

from the left bearing and μ=0.46. 

TABLE II: Validation of the natural frequencies obtained by our program -MATLAB- with that obtained by ANSYS 

Workbench where the crack is located in 0.14 m from the left bearing and μ=0.46 

Mode 

Natural frequencies 

Uncracked rotor Cracked rotor 

MATLAB 
ANSYS  

Workbench 

ε1 (%) 

(Mat/ANSYS) 
MATLAB 

ANSYS  

Workbench 

ε2 (%) 

(Mat/ANSYS) 

1 
forward 59.88 58.83 1.78 55.36 58.6 5.5 

backward 59.88 59.08 1.35 59 59.08 0.13 

2 
forward 181.2 183.4 1.2 178.3 181.09 1.54 

backward 181.2 183.7 1.36 180.6 183.14 1.38 

TABLE III: Validation of the critical frequencies obtained by our program -MATLAB- with that obtained by ANSYS 

Workbench where the crack located in the 2 element and μ=0.46 

Mode 

Critical frequencies 

Uncracked rotor Cracked rotor 

MATLAB 
ANSYS 

Workbench 

ε3 (%) 

(Mat/ANSYS) 
MATLAB 

ANSYS 

Workbench 

ε4 (%) 

(Mat/ANSYS) 

1 
forward 57.83 58 0.29 55.53 56.72 2.09 

backward 62.13 59.5 4.42 60.58 61.4 1.33 

2 
forward 176.7 183.4 3.65 165.4 181.08 8.65 

backward 185.5 183.7 0.98 179.9 183.15 1.77 

TABLE IV: Validation of the critical frequencies obtained by our program -MATLAB- with that of experimental of 

uncracked rotor 

Mode 

Critical frequencies 

Uncracked rotor 

MATLAB 
ANSYS 

Workbench 
Experimental 

ε5 (%) 

(Mat/Exp) 

ε6 (%) 

(ANSYS/Exp) 

1 
forward 57.83 58 56.6 2.17 2.41 

backward 62.13 59.5 / / / 

TABLE V: Validation of the critical frequencies obtained by our program -MATLAB- with that of experimental where the 

crack is located in 0.14 cm from the left bearing and μ=0.46 

Mode 

Cracked rotor 

MATLAB 
ANSYS 

Workbench 
Experimental 

ε7(%) 

(Mat/Exp) 

ε8 (%) 

(ANSYS/Exp) 

1 
forward 55.53 56.72 / / / 

backward 60.58 61.4 60.7 0.19 1.15 
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TABLE VI: Validation of the critical frequencies obtained by our program -MATLAB- with that of experimental where the 

crack is located in 0.25 m from the left bearing and μ=0.46 

Mode 

Cracked rotor 

MATLAB 
ANSYS 

Workbench 
Experimental 

ε9 (%) 

(Mat/Exp) 

ε10 (%) 

(ANSYS/Exp) 

1 
forward 54.52 56.49 / / / 

backward 60.03 61.3 60 0.05 2.17 

 

5. Influences of the Position and Crack Depth on Natural and Critical Frequencies: 

We study the influence of the depth and the position of the crack on the natural and critical frequencies of 

the rotor. We vary the depth of the crack, as well as the position of the crack.  

Table 7, 8 show that the natural and critical frequencies of the backward and forward modes of the cracked 

rotor decrease with respect to that of an uncracked rotor, this decrease is slight in backward modes by that in 

forward modes. 

The variation curve of natural and critical frequencies with respect to the position of the crack is similar to 

the shape of deformation mode, for example in the first mode, the frequencies decrease when we approach to the 

middle of the rotor’s shaft. 

Therefore, the results found show that the detection of the crack is difficult because we can find many 

results have the same values for different case of depth and position of the crack. 
 

 TABLE VII: Variation of the natural frequencies with respect to the crack depth and the position of the crack. 
Cracked  

element Mode 
Ratio of the crack depth  (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

1 
forward 59.88 59.83 59.71 59.54 59.31 59.01 58.61 58.1 57.46 56.67 55.75 

backward 59.88 59.85 59.82 59.79 59.76 59.74 59.72 59.7 59.67 59.62 59.55 

2 
forward 181.2 180.7 179.6 178 175.8 173.1 169.7 165.5 160.7 155.4 149.8 

backward 181.2 180.9 180.6 180.3 180.1 179.9 179.7 179.5 179.1 178.7 178 

2 

1 
forward 59.88 59.62 59.09 58.33 57.32 56.05 54.49 52.61 50.45 48.06 45.58 

backward 59.88 59.74 59.58 59.44 59.32 59.23 59.14 59.03 58.88 58.67 58.36 

2 
forward 181.2 180 177.4 174.1 170.1 165.4 160.4 155.2 150.1 145.2 140.9 

backward 181.2 180.6 179.7 179.1 178.5 178.1 177.7 177.2 176.5 175.6 174.2 

3 

1 
forward 59.88 59.5 58.75 57.68 56.32 54.56 52.66 50.38 47.84 45.16 42.48 

backward 59.88 59.68 59.44 59.24 59.08 58.95 58.82 58.67 58.46 58.16 57.73 

2 
forward 181.2 181 180.5 179.8 178.9 177.8 176.6 175.1 173.6 171.9 170.1 

backward 181.2 181.1 180.9 180.8 180.7 180.6 180.5 180.4 180.3 180.1 179.8 

 

TABLE VIII: Variation of the critical frequencies with respect to the crack depth and the position of the crack. 
Cracked  

element Mode 
Ratio of the crack depth  (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

1 
forward 57.83 57.83 57.73 57.67 57.53 57.38 57.18 56.87 56.45 55.87 55.12 

backward 62.13 62.07 61.97 61.87 61.75 61.55 61.33 61.08 60.85 60.55 60.28 

2 
forward 176.7 176.3 175.7 174.8 173.5 171.6 168.8 165.2 160.3 155.4 150.3 

backward 185.5 184.9 184.1 183 182 181 180.3 179.4 178.8 178.7 177.9 

2 

1 
forward 57.83 57.63 57.28 56.78 56.08 55.12 53.73 52.1 49.85 48.12 44.85 

backward 62.13 61.9 61.6 61.2 60.77 60.42 60.08 59.78 59.73 59.33 58.62 

2 
forward 176.7 175.6 173.7 171.2 167.8 163.7 159.3 154.6 149.2 144.3 140.1 

backward 185.5 184.6 183.2 181.7 180.5 179.7 179 178.5 177.5 176.6 175.3 

3 

1 
forward 57.83 57.57 57.08 56.32 55.32 53.93 52.4 50.03 47.62 45.15 42.2 

backward 62.13 61.83 61.33 60.82 60.28 59.87 59.73 59.25 58.92 58.52 58.32 

2 
forward 176.7 176.5 176.1 175.7 175.2 174.4 173.5 172.4 171.2 169.8 168.5 

backward 185.5 185.4 185 184.6 184.2 183.7 183.1 182.8 182.4 182 181.7 
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6. Conclusion 

In this work, we studied the influence of an open transverse crack on the vibratory behavior of rotors, a 

program was developed in MATLAB to generate the Campbell diagram to identify the natural and critical 

frequencies. After validation of the results of our program with a results founded with a simulation by ANSYS 

Workbench and other of experimental, we studied the effect of the position and the depth of the crack on the 

natural and critical frequencies of the rotor, and we noticed that: 

 The natural and critical frequencies of a cracked and uncracked rotor have a gap that can be used to 

identify the presence , depth and position of the crack 

 The natural and critical frequencies decrease with the increase of the crack, although this decrease is slight 

the danger is significant, this decrease is slight in the backward modes by that in forward modes. 

 The variation curve of natural and critical frequencies with respect to the position of the crack is similar to 

the shape of deformation mode.   

 More we discretize the rotor the detection of the crack became difficult because the values of experimental 

result confounds with several values of the numerical results of different cases of position and crack depth. 

 Detection of position and depth of crack is not easy and has become very difficult in cases of complex 

structure rotors. 
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