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Abstract: This paper addresses the need of the novel reciprocal state space (RSS) form to be the supplement of 

standard state space system in control designs. Controller is designed utilizing state derivative feedback alone in 

RSS form for systems with Lipschitz nonlinearity. It will show that the design procedure is straightforward. It will 

also show via a real electric circuit that control for a class of singular systems with impulse modes can easily be 

carried out using the proposed design method. The purpose of this paper is to develop novel and simple method 

based on state derivative feedback so that wider ranges of problems can be solved without too much of 

mathematics overhead.  

Keywords: reciprocal state space (RSS) form, state derivative feedback, Lipschitz nonlinearity, singular system, 
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1. Introduction  

In many practical applications such as flight controls and especially robotic controls which contain nonlinear 

triangular function terms, there are nonlinear Lipschitz terms [1-2] as shown in the following state space system.  

 ,x Ax Bu x u                                                                                 (1a) 

           ,x u x Ax Bu x               (1b) 

where x is state vector, u is control input vector,  ,x u   is a nonlinear Lipschitz term containing mismatched 

uncertainty and un-modelled dynamics and    is the Lipschitz gain.     

Generally speaking, for the system with Lipschitz nonlinear term, the changing rate of trajectory is limited 

by the changing rate of state. It is a highly active research area in academic. Methods based on Lyapunov 

stability [3-4],  H  control [5][7] and LMI [3-4][6] have been successfully carried out to handle control designs 

for system with Lipschitz nonlinearity. In previous studies, only Lipschitz nonlinearity of state was considered. 

The studies of Lipschitz nonlinearity of state derivative were few if any. The majority of design methods was 
developed in state space form and applied state related feedback in control design. However, in many 

applications, the sensors directly measure state derivatives rather than states. For instance, accelerometers [8] in 

micro and nanoelectromechanical systems and structural applications are such cases because acceleration signals 
can only be modelled as state derivatives [9-10]. Consequently, abundant control algorithms with state related 

feedback developed in standard state space form cannot be readily applicable in this situation. Additional 

integrators which may increase the cost and complexity of the implementation are needed. Furthermore, for 

system in the following generalized state space form, 

 Ex Fx Nu                (2) 

If E in (2) is singular, the system has poles at infinity and is called singular system.  It is obvious that 
singular system cannot be expressed in state space form to carry out control design. To provide supplementary 

design algorithms of state derivative feedback in state space form and handle some of singular systems, a direct 

state derivative feedback control scheme was developed in “Reciprocal state space” (RSS) form [9][11-15] by 
the author of this paper. If F in (2) is invertible, we can have the following system in RSS form and carry out 

control design with state derivative feedback. 
1 1x F Ex F Nu Ax Bu            (3a) 

 u Kx          (3b) 
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For above reciprocal state space (RSS) systems, state vector can be explicitly expressed in terms of state 

derivative vector and control input vector. The controllability and observability analyses for system in RSS form 
have been investigated in [12-13]. It shows that they turn out to be the same as their counterparts in state space 

form. After apply full state derivative feedback control law in (3b), the closed loop system becomes 

  cx A BK x A x                          (4) 

The concept of RSS is based on a fact that for a non-singular matrix, the eigenvalues of its inverse matrix 

must be the reciprocals of its eigenvalues.  Therefore, the eigenvalues of cA  in (4) are the reciprocals of the 

closed loop system poles. To address this nature, the name of reciprocal state space form was given. If state 

derivative feedback gain K can be designed such that the real parts of all eigenvalues of cA  in (4) are strictly 

negative, the closed loop system in RSS form in (4) can achieve globally asymptotically stable. When a 

controllable system has no open loop pole at zero, it can be expressed in RSS form to carry out state derive 
related feedback control designs.  

In this paper, the algorithm of utilizing state derivative feedback in RSS form to control system with 

Lipschitz nonlinearity of state derivative is introduced. To author’s best knowledge, no related research has been 

reported. The main purpose of this paper is to take the advantage of RSS so that state derivate feedback can be 

systematically applied in dealing with nonlinear Lipschitz term to handle wider range of control problems. 

2. Control Design For System With Lipschitz Nonlinearity Of State Derivative 

Variables  

Consider the following controllable system in RSS form with Lipschitz nonlinearity function of state 

derivative.  

  ,x Ax Bu x u         (5a) 

  ,x u x Ax Bu x          (5b) 

where    is Lipschitz gain.  

Without loss of generality, it is assumed that the matrix A is Hurwitz. If the matrix A is not Hurwitz, since (A; 

B) is controllable, a preliminary control can be used to make it Hurwitz. Therefore, we first focus on the 

controller design to eliminate the effect of Lipschitz nonlinearity to guarantee closed loop stability. 

The following state derivative feedback control law is proposed. 

             
2

K
u x

B
           (6) 

Substituting (6) to (5a), the closed loop system is  

   
2

, ,c

BK
x A x x u A x x u

B

 
     
 
 

     (7) 

To determine K, the following Lyapunov function candidate is selected 

   TV x x Px            (8) 

where P is a symmetric positive definite matrix. Applying (7), the time derivative of the Lyapunov function 

candidate becomes 

                   T TV x x Px x Px      , ,
TT

c cx P A x x u A x x u Px            

   2 ,T T T
c cx PA A P x x P x u             (9) 

   ,x u x   2 , 2Tx P x u Px x           (10) 

         2 , 2T T T T T
c c c cV x x PA A P x x P x u x PA A P x Px x             (11) 

Since 

     22
TT T T Tx I P I P x x PPx x Px x x         22 0T Tx PPx Px x x x        (12) 
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Using (12), the following inequality is obtained. 

 22 T TPx x x PPx x x                       (13) 

With (11) and (13), one can further obtain the following inequality 

     2( ) T T T T
c cV x x PA A P x x PPx x x      2T T

c cx PA A P PP I x       (14) 

Assuming that 0   and 

  2T T T
c cx PA A P PP I x x x             (15) 

One can have 

    ( ) 0TV x x x                               (16) 

Therefore, the closed loop system is asymptotically stable. Applying (6), (16) becomes 

   2T
c cPA A P PP I       2

2 2
0

T T
T BK K B

PA A P P P PP I
B B

             (17) 

Let 

  
1

2

TK B P         (18) 

, (17) becomes the following Algebraic Ricatti Equation: 

  2

2 2

T T
T BK K B

PA A P P P PP I
B B

         2

2
0

T
T BB

PA A P P I P I
B

 
 
       
 
 

  (19) 

Since 
2

TBB
I

B

 
 
 
 

 is symmetric positive semi-definite and  2 I   is symmetric positive definite, when  A  

is Hurwitz, there exists a symmetric and positive definite matrix P as the solution of (19) if the associated 

Hamiltonian matrix in (20) is hyperbolic, namely, H has no eigenvalues on the imaginary axis [3][16]. 

 

 

2

2

T

T
c

BB
A I

BH

I A 

 
 

 
 
    

       (20) 

It is further proven in [3] that if  min ( )M  is the minimal singular value of matrix M and the number  

( , )M N  is defined as 

 min( , ) min
R

i I M
M N

N


 



 
  

 
       (21) 

, the condition for H being hyperbolic given by (20) can be simplified as follows. 

 ( , )T TA B
B


          (22) 

If the matrix A in (5) is not Hurwitz, since (A;B) is controllable, a preliminary control 1 1u K x    can be used 

to make it Hurwitz.   

  1 1( ) ( ) ,x A BK x B u K x x u              (23) 

To increase design flexibility, an invertible matrix cT  is used to perform similarity transformation. 

 xTxxTx cc

1
        (24) 

Applying (24), (23) is 

  1 1 1
1 1( ) ( ) ,c c c c c cx T A BK T x T B u K T x T T x u             1

1( ) ,c c cA x B u K T x T T x u          (25) 
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According to the Lipschitz nonlinearity after coordinate transformation, one can have new Lipschitz gain     

in the following inequality. 

  1 ,c cT T x u x           (26) 

If we apply the following control law: 

 1 2

1
cu K T x K x

B
    


      (27) 

Substituting (27) to (25), one obtain 

    1

2
,c c

B K
x A x T T x u

B


  
      
  

                  (28) 

Using similar derivation in (7)-(19), one have 

   2

2
0

T
T

c c c c c

B B
P A A P P I P I

B
 

  
        
  

    (29) 

Solving this Algebraic Ricatti Equation to obtain cP , we have 

 
1

2

T
cK B P         (30)  

From (24), (27) and (30), the gain of control law  u Kx    for the original system is found as follows. 

 1
1 2

1

1
c

c

K K K T

T B





         (31)  

3. Design Example For Singular System With Impulse Mode 

The following circuit shown in Figure 1 is an example of a singular system with impulse mode [17]. It is 
generally considered to be difficult to carry out the control design for such a system.  However, we will find that, 

simply transforming the dynamic equations of the system into the RSS form in the first place, the control design 

becomes as straightforward as the usual control design approach used for standard state space systems. 

Example: Consider the singular system of the circuit shown on the left-hand side of Fig. 1, and its equivalent 

alternating current circuit is shown on the right.  

 In the figure, Cv   is the capacitor voltage, Ei   is the emitter current, and    is the common-base current 

gain of the bipolar junction transistor. The dynamic equation for the system is given as 

1 1

2 2

0 0 1 0

0 0 1 0 1

x xC
u

x x

        
         

        
 , 

where 1

2

c

E

v x
x

i x

   
    
   

 and initial condition: 
1

(0)
0.5

x
 

  
 

. 
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Fig. 1: Singular circuit system with impulse mode. 

The system may be transformed into the RSS form: 

0 0 1

0 0
x x u

C

   
    
   

 

For illustrational purpose, let 1C  . If Lipschitz nonlinearity is added to the system as follows for verifying 

the proposed algorithm, we have 

                
1

00 0 1
,

2sin1 0 0
x x u Ax Bu x u

x

     
               

 

Therefore, the minimum of Lipschitz gain is 2  . Note that, greater Lipschitz gain can be selected in design 

if the performance of the closed loop system is not good enough. Since the open loop system is not Hurwitz, 

 1 1 1.5 0.5u K x x       , a preliminary control is used to make it Hurwitz. If cT  is an identity matrix and 

1  , the associated Hamiltonian matrix in (20) is obtained as follows. 

              

1.5 0.5 0 0

1 0 0 1

5 0 1.5 1

0 5 0.5 0

H

  
 
 
 
 
 

 

Since the eigenvalues of H are  -1.8297  0.4721i   and  1.8297  0.4721i , H has no eigenvalues on the 

imaginary axis. Consequently, matrix cP   in (29) should be symmetric and positive definite. By applying the 

proposed design process and solving Algebraic Ricatti Equation in (29), we do have a symmetric and positive 

definite matrix cP  as follows. 

 
1.8534 0.3369

0.3369 2.1594
cP

 
  
 

 

Applying (30) and (31), the gain of control law for the original system is obtained as follows. 

     1.5 0.5 0.9267 0.1684 2.4267 0.6684K           

 The closed loop poles which are the reciprocals of the eigenvalues of A BK are -11.1614 and -0.3850.  

The simulation of state responses of the close loop system is given in the following Fig. 2 and they do 

converge as expected. Therefore, the proposed methodology is successfully verified. 
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Fig. 2: state responses of the close loop system 

4. Conclusions 

 Control design for system with Lipschitz nonlinearity of state derivative variable in RSS form has been 

investigated in this paper. It has shown via a real electric circuit that control design for a class of singular 

systems with impulse modes and Lipschitz nonlinearity can easily be carried out using the proposed method. 

The control design for system in RSS form using state derivative feedback can be obtained via an algebraic 
Riccati equation. Note that the derivation and design method parallel those for systems in standard state space 

form. Therefore, mathematics overhead is low for people to apply state derivative related feedback in RSS form.  
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